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PREFACE

This Memorandum constitutes another step in a

continuing investigation of the physics and mathematics

of general relativity. Here, we are concerned with the

boundary values which are appropriate to those cosmological

models which assume that the material medium is a perfect

fluid. In the past, it has usually been assumed that the

entire space is filled by the fluid. The results reported

here make such an assumption unnecessary and provide the

basis for a cosmological model in which there are a finite

number of isolated world tubes of fluid which would hope-

fully correspond to galaxies.
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SUMMARY

The problem of constructing consistent boundary data

for an isolated world tube of perfect fluid is examined.

The results show that one obtains a unique representation

of all limiting quantities through simple constructions in

a subsidiary three-dimensional hyperbolic-normal metric

space. It also follows that the geodesic hypothesis can

be invalidated only by internal dynamical processes. If

the bounding surface is not known, a consistent procedure

is given for the construction of the first and second

fundamental forms and the boundary data such that a bounding

surface is realizable in the underlying Einstein-Riemann

space.
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RELATIVISTIC SURFACE DYNAMICS OF AN ISOLATED WORLD TUBE

OF PERFECT FLUID

1. The dynamics of discontinuity surfaces in general

relativity [1] has been used to examine the properties of

the bounding surfaces of galaxies in the Hubble E-Series

[2, 3]. In view of the fact that most previous relativistic

galactic models have been based on the assumption that the

momentum-energy tensor interior to a galaxy has a form

characteristic of a perfect fluid, it seemed appropriate

to examine the surface dynamics of an isolated world tube

of perfect fluid. The results show that one obtains a

unique representation of all limiting quantities through

simple constructions in a subsidiary three-dimensional

hyperbolic-normal metric space. It is also shown that the

geodesic hypothesis can be invalidated only by internal

dynamic processes. If the bounding surface is not known,

a consistent procedure is given for the construction of

the first and second fundamental forms and the boundary

data such that a bounding surface is realizable in the

underlying Einstein-Riemann space.

2. Let E be an Einstein-Riemann space whose metric

structure is defined by the quadratic differential form

(2.1) ds2 = hAB dxA dxB (A, B, = O, 1, 2, 3)

having signature -2. We denote by Z a regular, time-like

hypersurface in E which is defined by the parametric
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equations

xA. °u, uI, u2 ).

The normal vector to Z, defined by

A (xA def afA (u)/Buo),xa NA~O (a0,

can be normalized by the requirement N NA ---. We shall

also assume that any "time-slice" of Z yields a closed

two-surface. Let aaP dua dup denote the first fundamental

form on E, then

-- A B•
aaP - hAB X XP

where the bar is used to denote evaluation on E. It is

also evident that the four vectors NA, xa for a - 0, 1, 2

are linearly independent on E in E and

(2.2) a a xA xB _ RAB + NA NB•

(t goes without saying that the array of functions aP

form a nonsingular, symmetric form with signature -1.) If

we denote the coefficients of the second fundamental form

by baP, we have ba - b., and

(2.3) XA . b NA

(2.4) N; A =. b= a•y xA•

;a ap y

Throughout this paper, Latin indices have the range 0, 1,
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2, 3, Greek indices have the range 0, 1, 2, and the semicolon

is used to denote covariant differentiation--the comma being

reserved for the case of coordinate differentiation.

Let SAB denote the jump strengths in the components

of the momentum-energy tensor, that is,

(2.5) SAB = (TAB] = TAB(+) - TAB(-)

where TAB(+) (TAB(-)) denotes the limiting value of TAB

as E is approached from the exterior (interior). The

results of reference [I] show that the functions

(26) Sap def A B
(2.6) = SAB xa XP

serve to determine the SAB's uniquely.. Tiis being a

consequence of the existence requirements

B(2.7) SAB N = 0.

In addition, the Sap's must satisfy the fundamental

system of equations

(2.8) -, - F

(2.9) b + 0

where

(2.10) Fa ý FA x, F NA

and

(2.11) FA = [TN;C] Nc NB
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3. We assume that E is the boundary of a world

tube of perfect fluid whose immediate neighborhood is

empty. The components of the momentum-energy tensor

interior to E are thus given by

(3.1) TAB f PWA WB - p(hAB-- WA WB) B P WA WB - p hAB

where

(3.2) P= + p, WA WA= i,

while in the immediate neighborhood exterior to Z all

components of the momentum-energy tensor vanish. With a

bar used to signify evaluation as E is approached from

the interior, (3.1) yields
*

(3.3) SAB WA WB + P('FAB--WA WB),

in view of the fact that TAB = 0 immediately exterior

to E. Since the functions SAB must satisfy the four

conditions (2.7), we have

0fi WA WB NB- p(NA -- WA WB NB)

In view of the fact that SAB admits WA as an eigen

vector, the above equations can be satisfied for SAB + 0

if and only if

(3.4) WA NA 0, -0.

The change in sign occurs owing to the definition of
SAB as the exterior limit minus the interior limit.
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We thus have

(3.5) SAB"- T WA WB

as the most general form of the jump strengths of a locally

isolated world tube of perfect fluid, the vanishing of

being used to obtain T = i .

4. In view of the first of (3.4) and the properties

of the vectors (NA, xA), we have

(4.1) lA = Wa xA

the quantities Wa being defined by

AWa =WA xe•

Surface covariant differentiation of (4.1) and use of (2.3)

gives

(4.2) VA =WP. xA + WPb NA

Now,

A (WA ) B
a ;B Xaj

so thata contraction with x ay together with (2.2) and
Y

(4.2) yields

((W A aay + ayC
;a axP Wbu xyNPa)YCD ;•B)NBD-
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When this result is combined with (3.4), we obtain the

acceleration vector on Z, namely

(4.4) (O WO'XA+WOWb NA

In a similar fashion we obtain

(45) - a Ba~BC - (P7) NA NC,

(4.6) Cp*C ) - p7A NA NC

the latter result stemming from the fact that p- 0.

We also have from (4.1) that

1 AWB T A xB - W a WaN
AB AB xa P a a

Covariant differentiation of (3.1) yields

TA;C PC WA W + P WA;C WA ;C - PC A

Hence, on combining (2.11) and (3.4) and remembering the

sign convention for jump strengths, we obtain

(4.7) FA T- V (WBc) NC NB + (pC) NC NA

so that

(4.8) F--- W (WPC) NC NB,

(4.9) x (-pC) Nc.

We have thus obtained all significant differential

expressions in terms of the geometry of E together with

surface and normal differential expressions.
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5. We are now in a position to apply the fundamental

system (2.8), (2.9). From (2.6) and (3.5) we have

(5.1) sc - - Wý

Hence, if we substitute (5.1) and (4.9) into (2.9) we

arrive at

(5.2) P Wt' bap - p7C) NC.

Similarly, if we substitute (5.1) into (2.8) and use

(4.9), we obtain

(5.3) (-'Wa) W, W NBC

Contracting (5.3) with Wa and using the fact that

Wa W= - 1, gives us

(5.4) (P-W) -" (wC) NB NC

Thus, eliminating the common term between (5.3) and (5.4)

we are led to

(5.5) IF WP; ( W, - 0.

In addition, with the aid of (4.3) we see that equation (5.4) is

equivalent to the condition

(5.6) {(05W);A - o

The vector field W. thus defines geodesics in the three-

dimensional hyperbolic-normal metric space E* with
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metric differential form aap dua duo = d- 2 and the

quantity P is given by

(5.7) PO exp f (% NC(wBC) _ W•) d}

If the motion is incompressible, that is 0;A

we have T = Pc by (4.3).

6. Thomas [4] has pointed out that an isolated

world tube of perfect fluid contains a fluid particle

which describes a geodesic in E if (P WA);A = 0. The

above result that this condition is rigorously satisfied

on the boundary of such a world tube indicates that there

must be creation or annihilation of the flux P WA due

to internal processes if a geodesic is not to result.

7. Under the customary assumption that the disconti-

nuity problem is of second order in the h's, that is

[hAB] = [hAB,CI = 0 )

jumps in the momentum-energy tensor imply jumps in the

second coordinate derivatives of the h's. It has been

shown [5] that there exists a symmetric tensor X on

such that

(7.1) [hAB,CD] = XAB NC ND

If the Einstein field equations are to be soluable, it may

be shown [11 that we must have

(7.2) Xap = K(2Sa - S aa•)
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where

(7.3) A B

ap AB'aX'P

The inversion of (7.3), as given by equation (3.17) of [i],

then determines the jump strengths XAB of the metric

field to the extent that such determinations may be effected.

For the case at hand, (5.1) and (7.2) give

(7.4) X a = KT(2Wa W - aao)

8. If we assume that the hypersurface E is known,

the above results give a complete statement of the boundary

data for a world tube of perfect fluid. One takes a time-

like geodesic in the metric space E with unit tangent

vector (W0). The limiting values of the velocity field

are then uniquely determined by

(8.1) = ,W A
xa

and the quantities P and p are given by (5.7) and

p = 0. The jump strength of the metric field are then

given by (7.4).

9. Suppose now that the equation for E is not

known. In this case, the results of the previous paragraph

still give us the appropriate boundary data, but the
A

quantities aap, bap and xa are unknown. Since the Gauss-

Cadazzi equations can be shown to be valid for second order

problems [5], we can still obtain a complete determination

of the boundary data if we can find consistent means of
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determining the quantities a a. It has been shown [I]

that the differential system (2.8) can be integrated in the

space E under rather general circumstances. The results

are

1(9.1) so : (K a - -(K + 1)a a) + QaO

where K are the components of the Ricci tensor of E

K is the scalar curvature of E*, 0 and I are constants,

and Q are the components of a symmetric tensor such

that

(9.2) Q;O - Fa

For the case of a perfect fluid, we therefore have

(9.3) - TWO W ( @ (K., - (K+fl )a,,) +Q,,

and

(9.4) Q - TW 0

where

(9.5) 0= (WA ;B) NB NA

Hence, for any particular solution of (9.4), the system

(9.3) becomes a differential system for the determination

of the quantities a•p. Any system of a's determined in

this fashion can be combined with the Gauss-Cadazzi equations

and the previous results to yield the remaining unknowns
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A
b a and xa. If one proceeds in this manner, cognizance

of certain intrinsic properties of the bounding surface E

can be included in a straightforward manner. For instance,

if it is known that the hypersurface E admits a group of

motions, this fact can be combined with (9.3) so that the

resulting a's will exhibit such properties (see Sec. 6

of [1] for a particular example). In the particularly

simple case in which 0 = 0, we can take QP = 0. The

system (9.3) then shows that the space E* is a three-

dimensional analog of an Einstein-Riemann space with

incoherent matter.
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